
The Program Preparation
S y s t e m

Keith D. Cooper
Department of Computer Science

Rice University

http://hipersoft.rice.edu/stc_site_visit/talks/PPS.pdf

Preparing Programs for the Grid
State of practice today

• Use Python & Perl to write top-level scripts

• Lash together libraries, communications code, …

• Obtain efficiency from hand-tuned libraries

• Involves much trial and error

• Grid programming is only for a specialist
 (or team of specialists)

• Reasonable results, unless something goes wrong at run-time

If programming is hard, the Grid will not reach its potential
— Mainstream scientists & engineers will remain out of the loop

Preparing Programs for the Grid
The future

• Domain-specific languages that generate efficient code

• Adaptive, Grid-aware libraries that provide performance

• Automated generation of mapping strategies

• Load-time mapping,binding & optimization

• Run-time monitoring (& remediation) of actual behavior

• Support for checkpoints, replication, and migration

The goal

• Make Grid programming accessible to a broad range of
applications and users

The PPS Vision

Deliver ease of programming + performance

• Requires cooperation from a broad set of tools

• Requires big team with diverse skills & perspectives

Whole-
Program
Compiler

Libraries
Binder

Real-time
Performance

Monitor

Performance
Problem

Resource
Negotiator

Scheduler

Grid
Runtime
System

Source
Appli-
cation

Config-
urable
Object

Program

Software
Components

Performance
Feedback

Negotiation

The PPS Vision

Methodology

• Study applications & applications development

• Codify and automate the parts that are common or difficult

Whole-
Program
Compiler

Libraries
Binder

Real-time
Performance

Monitor

Performance
Problem

Resource
Negotiator

Scheduler

Grid
Runtime
System

Source
Appli-
cation

Config-
urable
Object

Program

Software
Components

Performance
Feedback

Negotiation

The PPS Vision

Theme

• Use performance models throughout the process & the system

Whole-
Program
Compiler

Libraries
Binder

Real-time
Performance

Monitor

Performance
Problem

Resource
Negotiator

Scheduler

Grid
Runtime
System

Source
Appli-
cation

Config-
urable
Object

Program

Software
Components

Performance
Feedback

Negotiation

The PPS Vision

Theme

• Move mapping, binding, and code tailoring later in the process

Whole-
Program
Compiler

Libraries
Binder

Real-time
Performance

Monitor

Performance
Problem

Resource
Negotiator

Scheduler

Grid
Runtime
System

Source
Appli-
cation

Config-
urable
Object

Program

Software
Components

Performance
Feedback

Negotiation

The PPS Vision

Theme

• Move analysis earlier, where we can invest more time in it

Whole-
Program
Compiler

Libraries
Binder

Real-time
Performance

Monitor

Performance
Problem

Resource
Negotiator

Scheduler

Grid
Runtime
System

Source
Appli-
cation

Config-
urable
Object

Program

Software
Components

Performance
Feedback

Negotiation

Telescoping Languages
A strategy for generating domain-specific languages (DSL)

Vision:

• Collection of libraries + syntax + mapping ⇒ efficient DSL

• Use analysis to simplify and automate DSL generation

Principles:

• Axioms & annotations about operators/library entries
—Let the system reason at a higher level

• Analyze axioms, algebra, & code
—Generate high-level optimization schemes
—Synthesize specialized entry points that capitalize on context

See http://hipersoft.rice.edu/grads/publications_reports.htm

Telescoping Languages

Community codes to domain specific languages

Users want both simplicity & performance (favor simplicity)

• Codes developed with scripting languages or Matlab-like tools

• Automatically turn these codes into DSLs
—Use extensive analysis to obtain performance

Example: Signal Processing Codes built on Matlab

• Small toolkits built on top of Matlab for exploration

• Must be recoded in C for communications devices

• Exploratory study of Telescoping Language mechanics
—Looking at libraries & applications
—Developing analyses & transformations (procedure strength reduction)

Dynamic Optimizer/Binder

Original name was misleading

Binder — load-time code tailoring

• Implements mapping for Compiler/Negotiator/Scheduler
—Tailor for local resources and machine parameters

• Inserts probes & actuators for monitor and dynamic optimizer

• Final optimization and tailoring for target machine

Dynamic Optimizer — software moderated execution

• Optimize executing program in response to actual behavior
—Hot paths, placement, specialization to run-time constants

• Validate performance model and report emergencies
—Local fixes for minor problems, report big problems to monitor

Area

Short
Term

(2 years)

Medium
Term

(3-5 years)

Long
Term

(5-10 years)

Domain-
specific
languages

Langs built
on Matlab
or Python

Initial
telescoping
languages

Higher levels
of algebraic
optimization

Whole
Program
Compiler

Vendor
compiler +

perf. models

Gen. variants
Gen. COPs
T.L. support

Filters to Binder
Hints for DO

Builder x86→x86
Mapping

Local opt’n

> 1 target
Pick variants
Late xlation

Use filters
Hints for DO

Dynamic
Optimizer

(DO)

All work
done by
Binder

Hot paths
Placement

Check model

Use hints
Remapping

New features

Our Plan

