
Performance Contracts:
Monitoring and Resource Management

Toward Intelligent Software

Dan Reed
Department of Computer Science

National Center for Supercomputing Applications
University of Illinois

http://hipersoft.rice.edu/stc_site_visit/talks/Contracts.pdf

Intelligent Software: An Analogy

• 50 MPH is a legal stricture with no ambiguity
— 51 MPH is a violation and you could be cited and fined

– rarely are violators ticketed for such small violations
— context determines actual behavior

– city rush hour traffic rarely obeys speed limits
– hazardous conditions change the effective speed limit

• What really happens
— police use contextual discretion

– “small” violations for “reasonable intervals” are tolerated
 rush hour, weather, and special events

— obeying the spirit of the law is usually the correct thing
– perturbations about the limits are expected and accepted

— if something happens, you want justice, not the law

• Intelligent, adaptive software is similar
— application needs and available resources determine behavior
— contracts must be flexible, with contextual discretion

Toward Intelligent Performance Toolkits

• Performance tools for computational grids
—Grid environments are dynamic
—applications and computational resources are also dynamic

– must adapt to sustain predictable levels of performance
—prerequisite of adaptation is recognition of changing conditions

• Approach
—performance contract

– specifies application and resource commitments
—application and execution signature models

– predict application and resource behavior
—monitoring and forecasting infrastructure

– detects when actual and predicted behaviors do not match

• Contract specification model options
—measurement and forecasts, compiler, library, and/or user
—historical, current, and predicted data

Sustaining Predictable Performance

• Detect if actual performance deviates from expected performance
— prerequisites

– prediction of expected performance
– measurement of actual performance

• Identify the cause(s) of the deviation(s)
— unexpected application behavior
— poor prediction of expected performance on allocated resources
— unanticipated load on one or more of the resources

– in the extreme case, resource failure

• Provide information to help guide possible actions
— migrate to new resources, continue on current resources, halt
— switch to alternate algorithms or re-optimized code
— lower precision of computations

• Archive collected information to improve future behavior
— predictions, resource selection, and algorithms
— application mixes and implicit interdependencies

Performance Contract Components

• Given
— a set of resources (compute, network, I/O, …)
— with certain capabilities (FLOP rate, latency, …)
— for given application parameters (matrix size, image resolution, …)

the application will
— exhibit a specified, measurable, and desirable performance

– sustain F FLOPS/second, render R frames/second, …

as predicted by the model(s) (global composition of models)
• Performance contracts specify a convolution of

— application intrinsic behavior and system resource responses

• Monitoring infrastructure verifies contract fulfillment
— performance sensors inserted/activated where needed

– real-time measurement and forecasting
 application, systems, resources (NWS, …)

— contract monitor detects when
– actual and predicted behaviors do not match

Application and Execution Signatures

• Application intrinsic metrics
—description of application demands on resources
—sample metrics

– bytes/message or FLOPS/source statement
—values are independent of execution platform

– but they may depend on problem parameters

• Execution space metrics
—reflect application demands and resource response to those demands
—express rates of progress
—sample metrics

– instructions/second or messages/second
—values are dependent on execution platform
—quantify actual performance and may include application interplay

• Application and execution signatures
—trajectories of values through N-dimensional metric space

M1

M2

M3

Example Performance Prediction Strategy

• Application signature model approach (very simplistic)
—application signature defined by application code and parameters
—application signature projected into execution metric space

– scaling factors for each dimension (simplistic for many reasons)

statements x FLOPs = statements
FLOP second second

• Projection factors
—correspond to capabilities of resources allocated to execution
—express contract resources and capabilities

• Resulting execution signature
—predicts application performance on given set of resources
—expresses contract specified measurable performance

Application
intrinsic

Projection
factor

System
specific

Example Contract Validation

• ScaLAPACK PDGSEV execution
— three separated Linux clusters
— application intrinsic metrics

– PAPI, MPI, and Autopilot

• Experiments
— projections derived from baseline run
— injected load on one node

– induced perturbations elsewhere

Knowledge Repository

Fuzzy Logic Rule Base

Fuzzy Logic
Decision Process

Fu
zz

if
ie

r

D
ef

uz
zi

fi
er

In
pu

ts

O
ut

pu
ts

SystemSensors Actuators
ActuatorsSensors

Instrumented Grid Application(s)

Lessons Learned

• Contracts provide a formalism for reasoning about behavior
—spatial and temporal variability must be captured
—even “simple” applications are surprisingly complex

• Qualitative correctness is subtle and challenging
—algorithmically describing acceptable behavior is challenging
—violation severity, frequency, and sources must be specified

• Remediation has many levels and costs
• Separation of application and system specifications is critical

—multivariate behavioral projections are needed

• Strong dependence on all software components
—experiments require diverse software and research skills

• Testbeds really matter
—controlled and large-scale for application validation and testing

Technical Challenges for the Future

• Signatures and projections
— multivariate projection and metric selection
— compact behavioral description

– polylines and feature extraction
— historical context from previous executions
— global temporal behavior and global evaluation

– multiple application and component interactions

• Software infrastructure for distributed measurement
— correlation and extraction
— hierarchical contracts and management

• Contracts for application communities and resources
— data, networking, computation, visualization, …

• Grid economies, learning, and control systems
— learning techniques and generalization
— resource negotiation and validation
— grid dynamics and stability
— global efficiency and temporal evolution

Center Motivation and Needs

• Contract data sources
— historical and predicted data on applications and systems

– resource and application measurement expert engagement
— deep compiler analysis and specifications

– compiler expert engagement
– application and library developer engagement

• Runtimes and environments
— configurable object programs

– adaptation and recompilation
— schedulers and resource managers

– infrastructure and policies for coordination

• Applications and testbeds
— complex, multidisciplinary applications

– engaged scientific community
— realistic hardware/software testbeds

– controlled environments for testing and experiments at scale

Interdependent
components

