Performance Contracts:
Monitoring and Resource Management

Toward Intelligent Software

Dan Reed
Department of Computer Science
National Center for Supercomputing Applications
University of Illinois

http://hipersoft.rice.edu/stc_site_visit/talks/Contracts.pdf

Intelligent Software: An Analogy

* 50 MPH is a legal stricture with no ambiguity
— 51 MPH is a violation and you could be cited and fined
- rarely are violators ticketed for such small violations
— context determines actual behavior
- city rush hour traffic rarely obeys speed limits
- hazardous conditions change the effective speed limit

* What really happens
— police use contextual discretion
- “small” violations for “"reasonable intervals” are tolerated
rush hour, weather, and special events
— obeying the spirit of the law is usually the correct thing

- perturbations about the limits are expected and accepted
— if something happens, you want justice, not the law @

* Intelligent, adaptive software is similar
— application needs and available resources determine behavior
— contracts must be flexible, with contextual discretion

_GrADS

Cirad Applicaton Developecnt Software Project

Toward Intelligent Performance Toolkits

* Performance tools for computational grids
—6rid environments are dynamic
— applications and computational resources are also dynamic
- must adapt to sustain predictable levels of performance
—prerequisite of adaptation is recognition of changing conditions

* Approach
— performance contract
- specifies application and resource commitments
—application and execution signature models
- predict application and resource behavior
—monitoring and forecasting infrastructure
- detects when actual and predicted behaviors do not match

* Contract specification model options
—measurement and forecasts, compiler, library, and/or user
—historical, current, and predicted data

_GrADS ‘

Cirad Applicaton Developecnt Software Project

Sustaining Predictable Performance

Detect if actual performance deviates from expected performance
— prerequisites

- prediction of expected performance

- measurement of actual performance

Identify the cause(s) of the deviation(s)
— unexpected application behavior
— poor prediction of expected performance on allocated resources
— unanticipated load on one or more of the resources
- in the extreme case, resource failure

Provide information to help guide possible actions
— migrate to new resources, continue on current resources, halt
— switch to alternate algorithms or re-optimized code
— lower precision of computations

Archive collected information to improve future behavior
— predictions, resource selection, and algorithms
— application mixes and implicit interdependencies

_GrADS

Cirad Applicaton Developecnt Software Project

Performance Contract Components

* Given
— a set of resources (compute, network, I/0, ..)
— with certain capabilities (FLOP rate, latency, ..)
— for given application parameters (matrix size, image resolution, ..)

the application will
— exhibit a specified, measurable, and desirable performance
- sustain F FLOPS/second, render R frames/second, ...

as predicted by the model(s) (global composition of models)

* Performance contracts specify a convolution of
— application intrinsic behavior and system resource responses

* Monitoring infrastructure verifies contract fulfillment
— performance sensors inserted/activated where needed AR
- real-time measurement and forecasting \Q\\
application, systems, resources (NWS, ..) &
— contract monitor detects when
- actual and predicted behaviors do not match

_GrADS

Cirad Applicaton Developecnt Software Project

Application and Execution Signhatures

* Application intrinsic metrics M,
—description of application demands on resources A
—sample metrics

- bytes/message or FLOPS/source statement
—values are independent of execution platform
- but they may depend on problem parameters

* Execution space metrics 1
—reflect application demands and resource response to those demands
—express rates of progress
—sample metrics
- instructions/second or messages/second
—values are dependent on execution platform
—quantify actual performance and may include application interplay

* Application and execution signatures
—trajectories of values through N-dimensional metric space

_GrADS

Cirad Applicaton Developecnt Software Project

Example Performance Prediction Strategy

* Application signature model approach (very simplistic)
—application signature defined by application code and parameters
— application signature projected into execution metric space
- scaling factors for each dimension (simplistic for many reasons)

statements x FLOPs = statements
FLOP second second
Application Projection System
intrinsic factor specific

* Projection factors
—correspond to capabilities of resources allocated to execution
—express contract resources and capabilities

* Resulting execution signature
—predicts application performance on given set of resources
—expresses contract specified measurable performance

_GrADS

Cirad Applicaton Developecnt Software Project

Example Contract Validation

* ScalLAPACK PDGSEV execution ° Experiments

— three separated Linux clusters — projections derived from baseline run
— application intrinsic metrics — injected load on one node
- PAPI, MPI, and Autopilot - induced perturbations elsewhere

Knowledge Repository

| | Fuzzy Logic Rule Base |
16 —— Cwerall
«— Compute
—t P - e II:-:| mmuricats
l " P 2 e i
v 5 (7] 12 -II -". ,.-'j I|I :I Ii : ..I'l
+ Y : ' £ ' o\ - {
>| 3 = Fuzzy Logic - 3 » \ R
Q— . .) a < h » II. : = II | I| &
,5 > § Decision Process 5 E ') ¥ [4
i o ! i R I| v
E D8r [[II | ’
§ :ﬁ! ! .-I| | L Il. [
Qogp | '|! ||f ; fi Jl'; 0
|i |I !: : Efl' b
D":I' r Il;: I|I Ii! 'JI 3 -
[S :
| _Sensors | System | Actuators ool ||
Sensors System Actuators f 2 P
] T k3 ' ' ' i ' i & 3 x
2 q] B 10 12 14 16 18
Sensor Measurement #
Instrumented Grid Application(s)
GrADS

Cird Applicaton Developecnt Software Project

| essons Learned

Contracts provide a formalism for reasoning about behavior
—spatial and temporal variability must be captured
—even "simple” applications are surprisingly complex

Qualitative correctness is subtle and challenging
—algorithmically describing acceptable behavior is challenging ‘
—violation severity, frequency, and sources must be specified

Remediation has many levels and costs

Separation of application and system specifications is critical
—multivariate behavioral projections are needed

Strong dependence on all software components
—experiments require diverse software and research skills

Testbeds really matter
—controlled and large-scale for application validation and testing

_GrADS

Cirad Applicaton Developecnt Software Project

Technical Challenges for the Future

* Signatures and projections o
— multivariate projection and metric selection e

— compact behavioral description - \]

- polylines and feature extraction
— historical context from previous executions s
— global temporal behavior and global evaluation oo
- multiple application and component interactions

* Software infrastructure for distributed measurement
— correlation and extraction
— hierarchical contracts and management

* Contracts for application communities and resources
— data, networking, computation, visualization, ..

* 6rid economies, learning, and control systems
— learning techniques and generalization
— resource negotiation and validation
— grid dynamics and stability
— global efficiency and temporal evolution

_GrADS

Cirad Applicaton Developecnt Software Project

Center Motivation and Needs

* Contract data sources
— historical and predicted data on applications and systems
- resource and application measurement expert engagement
— deep compiler analysis and specifications
- compiler expert engagement
- application and library developer engagement

* Runtimes and environments
— configurable object programs
- adaptation and recompilation
— schedulers and resource managers
- infrastructure and policies for coordination

* Applications and testbeds
— complex, multidisciplinary applications Interdependent
- engaged scientific community components
— realistic hardware/software testbeds
- controlled environments for testing and experiments at scale

_GrADS

Cirad Applicaton Developecnt Software Project

