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Abstract

An essential building block for any Data Grid
infrastructure is the storage server.  In this paper we
describe a high-performance cluster storage server built
around the SDSC Storage Resource Broker (SRB) and
commodity workstations. A number of performance
critical design issues and our solutions to them are
described.   We incorporate pipeline optimizations into
SRB to enable the full overlapping of communication and
disk I/O.  With these optimizations we were able to
deliver to the application more than 95% of the disk
throughput achievable through a remote connection.
Then we show how our approach to network-striped
transport is effective in achieving aggregate cluster-to-
cluster throughput which scales with the number of
connections.  Finally, we present a federated SRB
service over MPI that allows fast TCP connections to
stripe data across multiple server disks reaching 97% of
the combined write capacity of multiple nodes.

1. Introduction

Data-intensive applications constitute an increasing
share of high performance computing (HPC). An
increasing number of applications in domains such as
genomics/proteomics [1,2,3,4], astrophysics [5],
geophysics [6], computational neuroscience [7], or
volume rendering [8], need to archive, retrieve, and
process increasingly large datasets. These applications
are prime candidates for Grid computing [9] as they
involve remote access and extensive computation to
many data repositories. Several Grid middleware projects
[10,11,12] specifically target the management of
application data. They offer sets of basic concepts and
tools for storing, cataloging, and transferring application
data on the Grid. We will refer to that type of
middleware as Data Grid middleware and recognize that

it provides the fundamental building blocks for data-
intensive computing.

An essential building block for any Data Grid
infrastructure is the storage server.  The model of Grid
we refer to is a collection of clusters located in
supercomputing centers or high performance computing
labs with high speed connectivity to regional or national
backbones such as the Internet2. Some of the clusters are
used for computation, while others are dedicated to data
storage following distributed data manipulation models
proposed by the Data Grid community. In this paper we
explore the system design of such storage servers.  The
specific requirements that need to be addressed are large
cluster-to-cluster throughput, high I/O performance
delivered to the application, scalable disk bandwidth,
good matching of disk and network throughput. The
concept of cluster-based server has already been
proposed in connection with specific domains of
applications such as video servers [13,14] and Internet
data caches for large dataset acquisition [15].  In this
paper we focus on clusters employed as general purpose
data servers in the context of high performance data-
intensive computing. In our study, a (possibly parallel)
application is running on a client cluster and we want to
maximize the performance of accessing the data stored
on a remote storage server. We assume that the data is
accessed according to a remote file access model through
Unix I/O style primitives, an approach commonly
adopted by Grid middleware.

We assume a cluster based architecture for our server
because it uses inexpensive off-the-shelf PC components,
offers an inherently scalable aggregate I/O bandwidth,
and can take advantage of existing cluster installations
through double-use or upgrade of older hardware.  By
leveraging the high-speed communication afforded by
the cluster interconnect, large files can be stored in a
scalable fashion by striping the data across multiple
nodes.  With single disk capacities of 160 GB and prices
as low as $1/GB, 10 TB of disk storage can be added to a



small cluster for less than $10,000. At the current rate
growth of disk size, inexpensive 50-100 TB clusters will
be realistic in another year or so. By distributing the
disks across a sufficient number of cluster nodes,
aggregate bandwidth in excess of 1 GB/s can be easily
obtained with current hardware, a two orders of
magnitude improvement over single disk performance.
Further, the availability of CPU and memory on each
node offers the flexibility of additional data
manipulations such as pre-processing and caching.

The representative middleware tool employed in our
study is the Storage Resource Broker (SRB) [11].  SRB
is representative of Grid remote storage access tools not
only in its interface and client/server design, but also in
that it is not optimized for large data transfer.  In this
paper we show how restructuring the SRB protocol
according to a pipelining concept can enhance the
throughput of large data transfers.  We then expose the
performance bottlenecks existing along the entire data
path from the storage server disks all the way to the
application.  For each of these bottlenecks in turn we
implement a remedial solution and we measure the
performance improvement.  The main contribution of
this paper is to show the relevance of concepts such as
end-to-end pipelining, disk and network operation
overlapping, disk and network striping, in achieving an
efficient design of a cluster based storage cluster.
Furthermore, we expose several aspects of operating
system and middleware interaction that are relevant to
the careful implementation of these concepts.

The remainder of this paper is organized as follows:
section 2 describes the SDSC Storage Resource Broker.
Sections 3, 4, and 5 discuss the SRB performance
enhancements implemented; related work is covered in
section 6.  Finally section 7 concludes the paper.

2.  Storage Resource Broker

2.1  The Original SRB

The Storage Resource Broker (SRB) [11] was
developed by the San Diego Supercomputer Center
(SDSC) as part of the Data Intensive Computing (DICE)
effort. SRB was designed to provide a consistent
application interface to a variety of data storage systems.
Applications use the SRB middleware to access
heterogeneous storage resources using a client-server
network model consisting of three parts:  SRB clients,
SRB servers, and a metadata catalog service, MCAT.
SRB client applications are provided with a set of
simple, Unix-like API’s to interface with the remote SRB
server and thereby access various systems on different
servers. Each SRB server controls a distinct set of
physical storage resources, so a special scheme called

federated operation was added to provide interaction
between servers controlling different resources.  In the
federated operation, one SRB server acts as a client to
another SRB servers.

2.2  The Pipelined SRB

Analysis of the SRB protocol showed that a pipelined
transfer would increase throughput [16].  The crucial
advantage of the pipeline is that it enables the
overlapping of the different stages of the file transfer -
protocol processing, transport, and disk access. In a
previous project we restructured the SRB protocol to
implement a pipelined model of transport.  We
demonstrated a performance improvement of 43%/52%
for remote reads/writes larger than 1MB among nodes
connected to the same LAN.  More details of the
pipelined SRB are discussed in [17].  The emphasis of
our previous project was on the analytical modeling of
the pipeline, and on the application of the model to solve
design and runtime configuration issues such as selecting
the optimal chunk size. In this paper, we focus on the
interplay between all the elements of the data path, and
how they affect the pipelining.  For the analysis
described in this paper, we ported the pipelined version
of SRB to the Windows NT environment used on our
clusters. The pipelined version was derived from an
earlier release of SRB (1.1.2); to the best of our
knowledge, there have been no substantial changes to the
base transport protocol in the more recent releases.

3.  SRB Performance Enhancements

3.1  Experimental Setup

Our setup consisted of a client and a server cluster.
The first was a Myrinet-interconnected cluster of 32 dual
Pentium II/450MHz HP Netserver systems running
Windows NT 4.0.  The other was a Myrinet-
interconnected cluster of 32 dual Pentium II/300MHz HP
Kayak systems, also running Windows NT 4.0; each
node was equipped with a 3Ware DiskSwitch IDE RAID
controller with four 20GB IDE disks configured as
RAID 0 (striped disk array).  A subset of nodes on the
client and server systems was connected by Gigabit
Ethernet through a Packet Engines PowerRail 5200
switch.

3.2  Baseline Throughput

The goal of this project was to maximize the fraction
of server disk I/O bandwidth presented to the remote
application through SRB. The main bottleneck for
remote
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Figure 1:  Original SRB baseline, NTFS, and TCP+NTFS benchmark throughput.

0

5

10

15

20

25

10 100 1000 10000 100000
Buffer Size (KB)

B
an

d
w

id
th

 (
M

B
/s

)

Write: Async Disk

Read: Async Disk

Write: SRB Baseline

Read: SRB Baseline

Figure 2:  SRB with asynchronous disk I/O.



access is usually the network; depending on the
configuration, disk throughput on the server can also
become a bottleneck. Therefore we first optimized the
SRB throughput in the traditional single client/server
configuration using pipelining; then we used network
striped transfer between the client and server cluster.
Finally, we took advantage of the high-speed
interconnects available in clusters to implement
federated SRB service over the Message Passing
Interface (MPI) [18].  This federated SRB approach
allows one edge node with high TCP throughput on the
server to stripe data across several storage nodes with
low disk throughput.

A simple SRB client application was used to measure
the baseline throughput of the original SRB for remote
read and write operations as shown in Figure 1. These
throughput measurements were taken from a client
application running on a dual Pentium II/450 HP
Netserver.  The SRB server was running on a dual
Pentium II/300 HP Kayak; the client and server systems
were connected by Gigabit Ethernet.  The other two
curves shown in Figure 1 are the local disk access
bandwidth measured on the server (shown as NTFS), and
the throughput of accessing the disk through a TCP/IP
connection (TCP+NTFS).  These curves represent
respectively the maximum local and remote disk access
bandwidth against which to compare our modified SRB.
From these curves it is apparent that the remote access
performance is network limited on our experimental
setup. To obtain the first curve we used the sio [19]
benchmark.  For the latter, a benchmark was created by
carefully combining the ttcp [20] network and the sio
disk benchmark tests.  The combined benchmark used
separate threads for network and disk I/O while
maintaining synchronization through shared buffers.
Using separate threads for network and disk operations
enabled the overlapping of network and disk operations
required for maximum performance.  The sio benchmark
showed that NTFS throughput was highest at larger
block sizes (16MB), whereas ttcp showed that TCP
throughput was highest for smaller block sizes (128KB).
For this reason, the shared buffer code was designed to
allow several small TCP blocks to be transferred for each
larger disk I/O block.

3.3  Asynchronous Disk I/O

The baseline SRB throughput results were far below
the TCP and NTFS bandwidth measured in benchmark
tests.  As shown in an earlier analysis of the SRB
protocol [17], the serialization of network transfer and
disk access was the major bottleneck in the system.  The
first performance enhancement for the pipelined SRB
was to overlap network and disk operations using
asynchronous disk I/O primitives.  As each chunk of data

is received by the SRB server, a non-blocking disk write
is issued so that the next receive operation could be
executed while the disk I/O proceeds in the background.
We implemented non-blocking disk access using the
Win32 I/O completion routine mechanism.

Using a shared buffer to implement a circular queue,
blocking TCP receive operations fill the queue, while
non-blocking disk writes empty the queue.  Only when
the TCP processing needs to use a buffer that is currently
in use does the disk I/O routine get polled for
completion.  This approach works well for writing data,
but not for reading since the blocking TCP send must
wait for the non-blocking disk read to complete before
continuing, thereby preventing the desired overlap of
disk and network I/O.  As shown in Figure 2, the
asynchronous disk operations did not work as well for
reads as for writes.

3.4  Aggregate Acknowledgements

For pipelining to work, the pipeline must be kept full.
The next bottleneck was due to the fact that the original
SRB protocol required every buffer transmission to be
acknowledged before executing the next buffer
transmission.  A modification of the internal SRB
protocol was required so that remote I/O requests can be
sent repeatedly without waiting for an acknowledgement.
Three new functions were added to the client library:
srbFileAioWrite, srbFileAioRead, and srbFileAioReturn.
The read and write functions ensure that the appropriate
data has been sent or received via TCP, and the return
function polls for completion of all outstanding read or
write operations as shown in Figure 3.  The aggregation
of acknowledgements is achieved by using the return
function to explicitly poll for the final acknowledgement
in a data transfer, while the modified read and write
primitives no longer wait for any acknowledgements.  As
shown in Figure 4, allowing the SRB client to send or
receive data continuously keeps the TCP pipeline full,
providing improved throughput compared to baseline
SRB results.

3.5  Asynchronous TCP Operation

Empirical tests of TCP throughput on our Windows
NT cluster showed that there were several tuning
parameters that affected performance.  First, we set the
system registry key for tcpRecvWindow to the maximum
value of 64KB.  Changing this registry setting from the
default value had a large impact on TCP throughput, and
all of the measurements presented in this paper use the
modified setting.  Next, we changed the TCP socket send
and receive buffer size to zero, which eliminates a copy
from the IP stack into the user buffer.  The measurements
indicated that non-blocking TCP provided better



Figure 3:  SRB asynchronous write operation.
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Figure 4:  SRB with aggregate acknowledgements.
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Figure 5:  SRB with asynchronous TCP, SRB baseline, and benchmark throughput.

performance than the standard blocking routines, so the
code was changed to support non-blocking sockets.  SRB
was modified to create two data sockets on separate ports
to support overlapped operation.  The SRB client library
sends or receives consecutive chunks of the file by
alternating between the two sockets.  We were surprised
to see a performance increase when using overlapped
TCP between two hosts using two separate sockets.  This
may be attributed to the TCP flow control, or possibly
the dual-CPU configuration of our test systems.  The
results shown in Figure 5 achieve over 99 percent of the
available system throughput for large buffers as
measured by our remote access benchmark

4.  Network Striped I/O

At this point we had achieved close to the maximum
possible performance of SRB on a single node server.
To improve throughput further, we needed to address the
two remaining bottlenecks represented by TCP and disk
bandwidth. The TCP protocol processing overhead on
the communication endpoints is the bandwidth limiting
factor.  However instead of modifying TCP, we got
around the bottleneck by parallelizing the connections
between SRB clients and servers as shown in Figure 6.
A crucial aspect is the use of separate client/server
endpoints, made possible by the parallelism of the
cluster.architecture on both sides of the connection. We
ran multiple SRB client processes (as an MPI

application), one per client cluster node, each of which
used TCP to communicate with the corresponding SRB
server on anode of the storage cluster. The multiple SRB
clients can be left exposed to the application (as in our
tests), or hidden behind a unified programming interface
(i.e. MPI-IO).  Figure 7 graphs the measurements of a
parallel file transfer using four clients and four servers.
These results show the aggregate remote write
throughput for each of the four client-server pairs used in
the test.  As expected, the parallel client results show that
the aggregate storage bandwidth of the cluster scales
with the number of cluster nodes.

5.  Federated SRB Using MPI

SRB supports federation of services so that multiple
SRB storage servers can coordinate operation to handle
remote client requests.  In this project the SRB federated
service was extended to support MPI reachable hosts
within a cluster.  By taking advantage of the fast
interconnects, data can be striped across multiple local
storage nodes for each client-server TCP connection. An
example federated SRB configuration is shown in Figure
8, using two storage nodes per edge node.  For remote
writes, each chunk of data sent from the client is received
by the edge node, and then forwarded in a round-robin
fashion to each of the storage nodes.  For remote reads,
the process is reversed. The addition of a second tier of
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Figure 6:  Network Striped Topology.
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Figure 8: Federated SRB-MPI Topology.
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servers and of communication links increased the length
of the data pipeline; a careful implementation preserving
overlapped operation between all stages was crucial for
performance.

For this experiment we reversed our usual setup and
used the Kayak cluster as the client and the Netserver
cluster as the server. With the Netservers on the server
side the bottleneck is the disk throughput, which is
limited to 18MB/s on each node.  Figure 9 shows the
results obtained using a ratio of two storage nodes per
edge node.  In this case, SRB-MPI throughput is much
higher than a single storage node, reaching 97% of the
combined write capacity of two nodes.

6.  Related Work

One system that shares many of SRB design goals is
the Global Access to Secondary Storage (GASS)
package, which is a part of the GLOBUS [21] toolkit for
distributed computing. GASS tries to optimize remote
file access using a number of client-side caching
schemes instead of overlapping communication and disk
transfer [22].  Lee et al. [23] describe models for
predicting the performance of applications that overlap
computation and communication.  The models consider
several options for configuring application run-time
environments including dedicated versus shared I/O
processors and threads, the ratio of compute nodes to I/O
nodes, variability of Internet throughput, and the
computation/communication characteristics of the target
application.  These models would need to be extended to
include the effects of overlapped communication and
disk I/O we studied in our project. The DPSS project
[15] uses a high-speed distributed data storage cache as a
source and sink for data intensive applications.  Real-
time network and system monitoring information is used
to load balance data across multiple servers using a
minimum cost flow algorithm. DPSS does support
parallel access from a single client to multiple servers,
but there is no pipelining of network and disk operations.
GridFTP [24] has a network striping functionality to
improve performance, which differs from our scheme in
that the multiple connections originate from a same
client. The single client scheme is not effective in those
cases in which the bottleneck is the protocol processing
at the endpoints, and not the network throughput.

7.  Conclusion

This goal of our project was to study optimization
techniques for large remote file transfers, and their
implementation issues on current commodity systems.
By implementing our throughput optimizations in
popular remote storage access tools such as SRB, our
high-performance enhancements are immediately

available to application programmers. By implementing
performance enhancements incrementally, the
contribution of each could be measured individually and
compared against the unmodified SRB throughput and
the maximum remote throughput.

A first set of improvements increases the base
throughput of SRB by using a notion of pipelined
transport which enables overlapping of the different
pipeline stages.  Different optimizations were required to
fully enable overlapping: asynchronous disk I/O
(write/read throughput improved by 85%/10% over
original SRB), aggregate acknowledgements (214%/
110% improvement), asynchronous TCP/IP
communication (428%/210% improvement). The final
value of write/read throughput corresponds to 95%/97%
of the maximum achievable throughput.

Since end-to-end throughput is heavily affected by
the specifics of each system, we provide two additional
methods of tuning performance:  network striped I/O,
and federated SRB service over MPI. Network Striped
I/O provides a way to match the throughput needs of the
client application with the available network and disk
throughput capacity; we showed a nearly linear speedup
using four-way network striping. MPI over a fast cluster
can be usefully employed for cluster-level disk striping.
Using our federated SRB over MPI in a setup with slow
disks, we were able to achieve 97% of the combined
write capacity of multiple nodes and to saturate the TCP
link
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