
An Adaptive Software Library for
Fast Fourier Transforms

Dragan Mirković
�

Department of Computer
Science

University of Houston
Houston, TX 77204

mirkovic@cs.uh.edu

Rishad Mahasoom
�

Department of Computer
Science

University of Houston
Houston, TX 77204

mahasoom@cs.uh.edu

Lennart Johnsson
�

Department of Computer
Science

University of Houston
Houston, TX 77204

johnsson@cs.uh.edu

ABSTRACT
In this paper we present an adaptive and portable software
library for the fast Fourier transform (FFT). The library
consists of a number of composable blocks of code called
codelets, each computing a part of the transform. The actual
FFT algorithm used by the code is determined at run-time
by selecting the fastest strategy among all possible strate-
gies, given available codelets, for a given transform size. We
also present an e�cient automatic method of generating the
library modules by using a special{purpose compiler. The
code generator is written in C and it generates a library of C
codelets. The code generator is shown to be exible and ex-
tensible and the entire library can be generated in a matter
of seconds. We have evaluated the library for performance
on the IBM{SP2, SGI{2000, HP{Exemplar and Intel Pen-
tium systems. We use the results from these evaluations to
build performance models for the FFT library on di�erent
platforms. The library is shown to be portable, adaptive
and e�cient.

1. INTRODUCTION
The importance of the fast Fourier transform (FFT) in many
applications has provided a strong motivation for develop-
ment of highly optimized FFT implementations in scien-
ti�c codes. A considerable research e�ort has been devoted
to this problem over the past forty years. First, the re-
search was focused on the design of algorithms that mini-
mized the number of arithmetic operations. The most im-
portant achievement in this direction was the FFT algorithm
by Cooley and Tukey [1], which reduced the asymptotic com-
plexity of the DFT from O(N2) to O(N logN). Although
the fast algorithms for DFT were �rst described by Gauss
in 1805, the publication of [1] was a turning point for the
FTT applications. The research that followed has produced

�The authors were supported by Air Force O�ce of Scienti�c
Research (AFOSR) under grant F49620{96{1{0289.

a number of important algorithms (split{radix algorithm,
prime factor algorithm, Rader's algorithm and Winograd
FFT) each of them reducing the number of arithmetic oper-
ations by a constant factor. However, a fast algorithm is only
a good starting point for an e�cient FFT code, since the ac-
tual implementation on modern{day (micro)processors has
proven to be nontrivial.

Current state{of{the{art codes adapt themselves to the com-
puter architecture and transform size by using a dynamic
construction of the FFT algorithm depending on the size of
the transform. The adaptability is accomplished by using
a library of composable blocks of code, each computing a
part of the transform, and by selecting the optimal com-
bination of these blocks at runtime. The blocks of code,
called codelets, are highly optimized and usually generated
by a special{purpose compiler. An excellent example that
uses this approach is the FFTW program [2], developed at
MIT.

We have applied a similar approach to the development of
an adaptive FFT library. In this paper we describe the op-
timization procedures for the adaptive FFT library that we
have developed, and present a detailed analysis of its per-
formance on a number of di�erent architectures. We use the
results of these analyses to build/con�rm our performance
models for FFTs on di�erent platforms. These performance
models are then used to make the selection process of the
optimal execution strategy more e�cient.

2. MATHEMATICAL BACKGROUND
The Fast Fourier Transform (FFT) is a divide{and{conquer
method for quick evaluation of the Discrete Fourier Trans-
form (DFT). In this chapter we give a short list of the algo-
rithms used in the UHFFT library. We refer the reader to [3]
and [4] for the more detailed description of the algorithms.
In particular, the notation we use here mostly coincides with
the notation in [3].

We denote by CN the vector space of complex N{vectors
with components indexed from zero to N � 1. The Discrete
Fourier Transform (DFT) for x 2 CN is a matrix{vector
product de�ned by

Xl =

N�1X
j=0

!
lj
Nxj; (1)

where !N is an Nth root of unity: !N = e�2�i=N and i =p
�1. In matrix vector terms, the DFT is written as

X =WNx (2)

where WN is the DFT matrix. The periodicity of !N intro-
duces an intricate structure into WN , which makes possible
the factorization of WN into a small number of sparse fac-
tors. The sparse factorization of WN is the essence of all
fast DFT algorithms. For example, it can be shown that
when N = rq, WN can be written as

WN = (Wr
 Iq)Dr;q(Ir
Wq)�N;r ; (3)

where Dr;q is a diagonal twiddle factor matrix of the form

Dr;q = diag
�
Iq;
N;q ; : : : ;

r�1
N;q

�
;

N;q = diag(1; !N ; : : : ; !
q�1
N) and �N;r is a mod{r sort per-

mutation matrix. If q is not a prime number the above al-
gorithm can be applied recursively. This is the heart of the
fast Fourier transform idea, and the algorithm Eq. (3) is the
well known Cooley{Tukey mixed{radix splitting algorithm.
In this algorithm a non{trivial fraction of the computational
work is associated with the construction and the application
of the diagonal scaling matrix Dr;q. The prime factor FFT

algorithm [5] removes the need for this scaling when r and
q are relatively prime, i.e., gcd(r; q) = 1. This algorithm is
based upon splittings of the form:

WN = P1(Wr
 Iq)(Ir
Wq)P2 = P1(Wr
Wq)P2;

where P1 and P2 are permutations.

For FFT sizes that are prime, Rader [6] developed an algo-
rithm that involves conversion of a given DFT into a con-
volution. It uses a number{theoretic permutation of WN

that produces a circulant submatrix of order N � 1. This
reduces the prime size problem to a non{prime size one for
which we may use any other known algorithm. The Rader
factorization can be written as

WN = Q1

�
1 eT

e CN�1

�
Q2;

where e is a vector of all ones, Q1 and Q2 are permutations,
and CN�1 is a circulant matrix. The action of the circulant
matrix can be obtained e�ciently by using the FFT, since
WN diagonalizes CN

WNCNW
�1

N = diag(WNc);

where c is the �rst column of CN .

Standard radix{2 procedures are based upon the fast synthe-
sis of two half{length DFTs. The split{radix [7] algorithm
is based upon a clever synthesis of one{half length DFT to-
gether with two quarter{length DFTs, i.e.,

WNx(0 : N � 1) =

8<
:

WN=2x(0:2:N � 1)
WN=4x(1:4:N � 1)
WN=4x(3:4:N � 1):

(4)

The resulting procedure involves less arithmetic than any of
the standard radix{2, radix{4 or radix{8 procedures.

3. OPTIMIZATION STRATEGY
Our FFT library uses an adaptive approach similar to the
one used by the FFTW library [2] from MIT. The main idea

is to develop a library which can be used over many di�er-
ent platforms. The optimization of the FFT routines in our
library is performed on two levels. The �rst (high) level op-
timization consists of selecting the optimal factorization of
the FFT of a given size, into a number of factors, smaller
in size, for which an e�cient DFT codelet exists in our li-
brary. The optimization on this level is performed during
the initialization phase of the procedure, which makes the
code adaptive to the architecture it is running on.

The second (low) level optimization involves generating a
library of e�cient, small size DFT codelets. Since the e�-
ciency of the code depends strongly on the e�ciency of the
codelets themselves, it is important to have the best possible
performance for the codelets to be able to build an e�cient
library.

3.1 Factorization schemes
Given the parameters of the problem, the initialization rou-
tine selects the strategy in terms of execution time on the
given architecture. This selection involves two steps.

First, we use a combination of the Mixed{Radix [3] and the
Prime Factor Algorithm (PFA) [3] splittings to generate a
large number of possible factorizations for a given transform
size. Next, we select the fastest factorization in terms of
the actual execution time on the given architecture. This
approach is time consuming and may not be feasible for
all applications. An alternative approach uses the codelet
performance data to estimate the cost of each factorization
and chooses the best scheme possible. The choice of the
approach is left to the user.

3.2 Library of FFT Codelets
The FFT library contains a number of composable blocks
of code, called codelets, each computing a part of the trans-
form. The overall e�ciency of the code depends strongly on
the e�ciency of these codelets. Therefore, it is essential to
have a highly optimized set of DFT codelets in the library.
We divide the codelet optimization into a number of levels.
The �rst level optimization involves reduction of the num-
ber of arithmetic operations for each DFT codelet. The next
level of optimization involves the memory hierarchy. In cur-
rent processor architectures, memory access time is of prime
concern for performance. Hence, it is essential to make use
of the memory hierarchy in such a way as to minimize the
impact of memory systems not capable of delivering data
and instructions at a rate needed for full utilization of func-
tional units. Optimizations involving memory accesses are
architecture dependent and are performed only once during
the installation of the library.

The codelets in our library are generated using a special
purpose compiler that we have developed. We used this au-
tomatic code generation approach because the actual coding
and optimization of the codelets become very tedious and
di�cult for transform sizes greater than �ve. For this reason
many authors have found it convenient to build the codelets
by using di�erent ways of automatic code generation. Our
code generator is written in C. It can produce DFT codelets
of arbitrary size, direction (forward or inverse), and rotation
(for PFA). It �rst generates an abstraction of the FFT algo-
rithm by using a combination of Rader's algorithm [6], the

Mixed{Radix algorithm [3] and the PFA. The next step is
the scheduling of the arithmetic operations such that mem-
ory accesses are minimized. We make e�ective use of tem-
porary variables so that intermediate writes use the cache
instead of writing directly to memory. We also use blocking
techniques so that data residing in the cache is reused the
maximum possible number of times without being written
and re{read from main memory.

Finally, the abstract code is unparsed to produce the desired
C code. The output of the code{generator is then compiled
to produce the executable version of the library. Any ANSI
C compliant compiler can be used for this compilation. The
strategy to produce codelets that can be compiled with any
ANSI C compliant compiler enables the ultimate portabil-
ity, since there is no need to install any particular compiler
on the platform targeted for the UHFFT library installation.
However, the strategy does introduce a degree of uncertainty
with respect to the performance that will be achieved, and
stability of the optimizations being used in generating the
codelets. Though we have observed that the output gener-
ated by di�erent compilers on di�erent processor architec-
tures vary greatly, the optimizations nevertheless seem to be
quite stable in the sense that the choices for code arrange-
ment of a particular codelet that we expect to perform best
on a particular architecture in most cases we have studied is
independent of the compiler used. As for compiler optimiza-
tion options, we have noticed that for most compilers and
most architectures, the optimization level "02" produces the
best performance for most codelets. Since all the codelets
are straight line codes without loops, higher level optimiza-
tions generally tend to a�ect the performance of the codelets
in a negative way.

Once the executables for the library are ready, we bench-
mark the codelets to test its performance. These benchmark
tests are conducted for various input and output strides of
data. The results of these performance tests are then stored
in a database that is used later by the execution plan gen-
erator algorithm during the initialization phase of an FFT
computation. The structure of the library is given in Fig-
ure 1.

Generator
FFT Code

(Algorithm Abstraction)
Initializer

Optimizer

Scheduler

Unparser

Routines
Initialization Execution

Routines

Twiddle Factor
Generation

Benchmarking
and Testing

Plan Selection

Library
UHFFT

(Cooley-Tukey)
Mixed-Radix Prime Factor

Algorithm Algorithm
Split-Radix

Utilities

Databases

Library of
FFT Codelets

Figure 1: UHFFT Library Organization.

3.3 Execution Plan Generation
Once we have an e�cient library of DFT codelets, we can
create FFT routines for various sizes using these codelets
as building blocks. For a given FFT size we �rst create an
execution plan which determines the codelets that are going
to be used for that FFT size and also the order in which
the codelets are going to be used. Given the parameters
of the problem, the initialization routine attempts to select
a strategy that minimizes the execution time on the given
architecture.

The basis for generating execution plans are the library of
codelets and two databases: the codelet database storing in-
formation about codelet execution times, and the transform
database that stores information about the execution times
for entire transforms. The codelet database is initialized
during installation of the library as a part of the bench-
marking routine. The transform database stores the best
execution plan for di�erent size transforms. The transform
database is initialized for some of the popular FFT sizes
during installation (such as power of 2 sizes) and is updated
every time a new transform size is executed.

For transform sizes that are not in the database, an exe-
cution plan must be created and this can be done in two
di�erent ways.

The �rst method is to empirically �nd the execution plan
that minimizes the execution time by executing all possi-
ble plans for the given size, and choose the plan with the
best performance. This method ensures that the plan se-
lected will indeed result in the smallest execution time for
all choices possible within the UHFFT library, but the time
required to �nd the execution plan may be quite large for
large size FFTs. So, unless many transforms of a particular
size are needed this method is not practical.

The second method is based on estimating the performance
of di�erent execution plans using the information in the
codelet database. For each execution plan feasable with the
codelets in the library the expected execution time is derived
based on the codelets being used in the plan, the number of
calls to each codelet, and the codelet performance data in
the codelet database. The estimation algorithm also takes
into account the input and output strides and transform di-
rection (forward or inverse). It also accounts for the twiddle
factor multiplications for each plan as the number of such
multiplications depend on the execution plan.

For large transform sizes with many factorizations, the es-
timation method is considerably faster than the empirical
method. The quality of the execution plan based on the
estimation approach clearly relies heavily on the assump-
tion that codelet timings can be used to predict transform
execution times, and that the memory system will have a
comparable impact on all execution plans.

The list of codelets, execution strategy, twiddle factors and
other information needed by the application to call the FFT
routine are stored in a special structure called the FftPlan.
Once the execution plan for a given transform size is gener-
ated, the application can use the structure to compute any
number of FFTs of the given size.

4. PERFORMANCE ANALYSIS
In this section we analyze the performance and e�ciency of
our FFT library. Since the optimization is performed on two
levels, we analyze them separately. We �rst compare the
di�erent algorithms for the FFT codelets and analyze the
performance of the codelets on di�erent platforms. Next, we
analyze the high level optimization of the execution strategy
and compare the performance of di�erent strategies. Before
we start the analysis, we �rst briey describe the di�erent
hardware platforms and environments that we have used to
test our library.

4.1 Target Hardware Architectures
We have evaluated the library for performance on the IBM{
SP2, SGI{2000, HP{Exemplar and Intel Pentium systems.
The SGI Origin 2000 at NCSA has 1528 MIPS R10000 64{
bit processors [8] of which 760 operate at 195 MHz and the
remaining operate at 250 MHz. We used the 250 MHz pro-
cessors with the IRIX 6.5.1 operating system for our tests.
The SGI R10000 processor supports four instructions per cy-
cle, i.e., two integer and two oating{point instructions plus
one load/store per cycle. Thus, peak performance achiev-
able is 500 MFlops (Flop = oating{point operations per
second) per processor. This processor has as primary caches
a 32 KB two{way set{associative on{chip instruction cache
and a 32 KB two{way set{associative, two{way interleaved
on{chip data cache with LRU replacement. It also has a 4
MB two{way set{associative L2 secondary cache per CPU.
The SGI R10000 has 64 physical registers, each 64 bits wide.

The IBM SP2 at the University of Houston has 64 IBM RS
6000 [9] processors, each running its own copy of the IBM
Unix clone AIX 4.3. 56 processors operate at a speed of 120
MHz and 8 processors operate at 135 MHz. We used the
120 MHz processors for the evaluation of our library. These
processors have a memory of 128 MB each. Each processor
has a data cache of size 128 KB and an instruction cache
of size 32 KB. There is no level{two cache. The cache line
is 256 Bytes wide while the processor and memory interface
widths are 8 32{bit words. The IBM RS 6000 has 32 64{bit
oating{point registers.

The IBM RS 6000 can execute up to six instructions per cy-
cle (one branch, one conditional register, two �xed{point,
and two oating{point). It has two oating{point units
(FPUs), each capable of �nishing a fused mult{add oper-
ation (x = a � b+ c) every cycle. Thus, the peak op rate is
4 times the clock rate.

The HP Exemplar X{Class server installed at the Center for
Advanced Computing Research (CACR) is based on the HP
PA8200 RISC microprocessor [10] operating at 180 MHz,
which due to its pipelined and superscalar architecture is
capable of 720 MFlops peak. Each processor has a 1 MB
direct{mapped data cache, a 1 MB instruction cache and is
running HP{UX, Hewlett{Packard's version of UNIX.

We used University of Houston Intel Pentium{II [11] PCs
operating at 400 MHz to test the performance of our library
on the Intel family of processors. The Intel Pentium{II is
a 32{bit CISC (Complex Instruction Set Computer) micro-
processor. The Intel Pentium{II has a 32 KB non{blocking,
level{one cache of which 16 KB is reserved as instruction

cache and 16 KB is used as data cache. The processor has
a dedicated 64{bit cache bus. It also has a 512 KB uni�ed,
non{blocking, level{two cache. The speed of the level{two
cache scales with the processor core frequency. The Intel
Pentium{II has one pipelined FPU for supporting 32{bit
and 64{bit arithmetic. The processor has 8 registers, 32 bit
wide each. The processors we used had a memory of 128
MB and were using the Linux 2.0.36 operating system. A
summary of the characteristics for all processors used for the
performance analysis is given in Table 1.

4.2 Analysis of FFT Codelet Algorithms
In this section we present results for the selection of algo-
rithms for the codelets of the UHFFT library. Di�erent
algorithms are used for codelets of di�erent sizes. The algo-
rithm resulting in the fewest operations for a given codelet is
chosen. Then, we verify that in fact the selected algorithm
also result in the fewest instruction cycles when the codelets
are compiled with the gnu C compiler version 2.7.23.

In Table 2 we compare the number of oating{point opera-
tions for the Mixed{Radix, PFA and Split{Radix algorithms
for various transform sizes. For all cases, Rader's algorithm
is used to generate codelets of prime size transforms (N=7,
11, 13, 17, 19, 23 etc.). The PFA has fewer arithmetic oper-
ations than the Mixed{Radix algorithm for transform sizes
that have relatively prime factors (N= 6, 10, 12, 15 etc.).
The Split{Radix algorithm results in a reduction of opera-
tions for transform sizes that are a power of 2. The reduc-
tions can be seen for sizes 16 and above (N = 16, 32, 64
etc.).

Since Rader's algorithm uses transforms of size N � 1 to
generate prime size transforms of size N , the savings in the
number of operations in the codelet of size N �1 is reected
in the size N codelets too. Rader's algorithm performs a
convolution that involves a forward and inverse transform of
size N � 1. Hence, the savings in the number of operations
in transforms of size N � 1 is reected twice in the codelet
for size N transforms. This we clearly see in codelets of size
N = 7; 13; 19 and 23 for the PFA algorithm and for N = 17
for the Split{Radix (SR) algorithm. The algorithms chosen
for the UHFFT library are speci�ed in bold font in Table 2.

The codelets generated by the automatic code generator are
converted to executable binary code by the compiler for the
target platform. The performance of the codelets depend
heavily on the output generated by the compiler on di�erent
architectures.

In Table 3 we compare the number of cycles required for
di�erent codelets when compiled with the gcc compiler ver-
sion 2.7.2.3 for Intel Pentium{II processors running Linux

2.0.36. Several compiler options were tested to get the
best result for the codelets. The -O2 -fomit-frame-pointer

-malign-double optimization option was used. The Perfor-
mance Counter Library (PCL) [12] was used to evaluate the
compiler output for the number of cycles, the number of
oating{point instructions and the total number of instruc-
tions. The total number of instructions per oating{point
instruction remains almost constant (� 3) while the total
number of instructions per cycle is in the range 1.2 { 1.5.

Processor SGI R10000 IBM RS 6000 HP PA8200 Intel Pentium-II

Clock Speed 250 MHz 120 MHz 180 MHz 400 MHz
Peak Performance 500 MFlops 480 MFlops 720 MFlops 400 MFlops
Primary Data Cache 32 KB (32 B) 128 KB(256 B) 1 MB 16 KB (32 B)
Secondary Data Cache 4 MB(128 B) None None 512 KB
Instruction Cache 32 KB 32 KB 1 MB 16 KB
Cache Associativity 2{way 2{way 1{way 4{way
Operating System IRIX 6.5.1 AIX 4.3 HP{UX Linux 2.0.36

Table 1: Processor characteristics.

Transform UH MR UH MR + PFA UH MR+PFA+SR
Size Adds Mults Adds(di�) Mults(di�) Adds(di�) Mults(di�)

2 4 0

3 12 4

4 16 0

5 40 12

6 40 16 36(4) 8(8)

7 92 52 84(8) 36(16)

8 52 4

9 80 40

10 108 40 100(8) 24(16)

11 236 116 220(16) 84(32)

12 104 32 96(8) 16(16)

13 232 108 216(16) 76(32)

14 224 128 196(28) 72(56)

15 196 88 180(16) 56(32)

16 148 28 144(4) 24(4)

17 328 116 320(8) 108(8)

18 212 112 196(16) 80(32)

19 460 292 428(32) 228(64)

20 264 96 240(24) 48(48)

21 384 232 336(48) 136(96)

22 536 272 484(52) 168(104)

23 1116 628 1012(104) 420(208)

24 274 86 252(22) 44(42)

25 432 184

32 388 108 372(16) 84(24)

36 508 248 464(44) 160(88)

45 824 436 760(64) 308(128)

64 964 332 912(52) 248(84)

Table 2: Operations count for UHFFT generated codelets.

Transform UH MR UH MR + PFA UH MR+PFA+SR
Size Total FP Total Total FP Total Total FP Total

Instr. Instr. Cycles Instr. Instr. Cycles Instr. Instr. Cycles
2 37 4 29 37 4 29 37 4 29
3 78 16 64 78 16 63 78 16 63
4 88 16 63 88 16 63 88 16 63
5 181 52 132 181 52 132 181 52 132
6 200 56 148 173 44 127 173 44 127
7 413 144 306 365 120 268 365 120 271
8 233 56 165 233 56 165 233 56 165
9 380 120 282 380 120 282 380 120 282
10 472 148 322 406 124 285 406 124 280
11 940 352 672 842 304 596 842 304 595
12 456 136 337 412 112 284 412 112 284
13 950 340 693 853 292 607 853 292 607
14 963 352 698 775 268 601 775 268 601
15 821 284 603 713 236 507 713 236 508
16 623 176 453 623 176 453 607 168 443
17 1243 444 911 1243 444 911 1224 428 905
18 969 324 742 847 276 650 847 276 650
19 1950 752 1478 1734 656 1323 1734 656 1323
20 1076 360 754 919 288 660 919 288 658
21 1630 616 1219 1345 472 1050 1345 472 1050
22 2117 808 1524 1776 652 1300 1776 652 1300
23 4234 1744 9987 3590 1432 4721 3590 1432 4723
24 1146 360 848 1025 296 754 1025 296 754
25 1702 616 1228 1702 616 1226 1702 616 1226
32 1611 496 1182 1611 496 1182 1530 456 1144
36 2194 756 1604 1891 624 1495 1891 624 1495
45 3415 1260 2549 2978 1068 2355 2978 1068 2354
64 3943 1296 9754 3943 1296 9854 3702 1160 7344

Table 3: Operations count for UHFFT generated codelets on Intel Pentium-II.

4.3 Performance of the FFT Codelets
For the performance evaluation of the FFT codelets in the
UHFFT library, we have benchmarked the codelets for trans-
forms of size 32 or less for a range of input and output strides
for the data. For our benchmarking we chose strides that
are powers of 2. Since the sizes of cache lines, cache and
memory usually are equal to some power of 2, we expect
to catch some of the worst performance behavior this way.
Each reported data item is the average of multiple runs, such
that the codelets are executed for at least one second. This
was done to ensure that errors due to the resolution of the
clock are not introduced in the results presented.

We see that for all platforms considered, the performance
decreases considerably for large data strides. If two or more
data elements required by a particular codelet are mapped to
the same physical block in cache, then loading one element
results in the expulsion of the other from the cache. This
phenomenon known as cache trashingoccurs most frequently
for strides of data that are powers of two because data that
are at such strides apart are usually mapped to the same
physical blocks in cache depending on the type of cache that
is used by the particular architecture. For all architectures,
the sharp decrease in performance due to cache trashing
occurs when:

datapoint size � stride � codelet size
2

>
cache size

Associativity

where datapoint size is the size of one data element (for
complex data with 8 Byte real and imaginary data, each
data point is of 16 Bytes), codelet size is the number of
data elements being transformed by the codelet, cache size
is the total size of the cache in Bytes, stride is the data
access stride, and Associativity is the type of cache being
used by the architecture. We present the performance of
codelets as a fraction of the peak performance achievable
for each architecture and relate the observed sharp decrease
in performance at particular strides to the above model of
cache behavior.

4.3.1 The SGI R10000
In this section we present the performance of the UHFFT
codelets for power of 2 input and output strides on the SGI
R10000 processor. The performance is seen to be symmetric
with respect to input and output strides. Thus, reads and
writes from cache a�ect the performance in a similar man-
ner. The SGI R10000 processor has two{way set{associative
caches (Associativity = 2) for both level{one and level{two
caches, i.e., a data point in memory may be mapped to one
of two possible physical blocks in cache. The level{one cache
is of size 32 KB and the level{two cache is of size 4 MB. No
cache trashing occurs for codelet of size 2 (and 3 because
a size 3 transform uses size 2 transforms for its computa-
tions), since the cache can hold both data elements for a
size 2 transform regardless of the stride. For larger codelets,
more data needs to be present in the cache at the same time
and trashing occurs when a conict occurs. A sharp drop in
performance due to level{one cache trashing for the codelets
occurs at the following strides:

stride >
32KB

16 � 2 � codelet size
2

=
211

codelet size

and due to level{two cache trashing at the following strides:

stride >
4MB

16 � 2 � codelet size
2

=
218

codelet size

We have illustrated the performance of two codelets as a
fraction of the peak achievable performance on the processor
in Figure 2. In Figure 3 we present the average performance
for each codelet along with the range of performances for
each of them. The peak performance is achieved for strides
that are smaller than the cache line size (128 Bytes) of the
processor.

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 20 32
0

50

100

150

200

250

300

350
250 MHz R10000. Peak performance = 500 MFlops

Codelet size

M
FL

O
P

S

Forward
Inverse

Figure 3: 250 MHz SGI R10000 UHFFT codelet
strided performance.

4.3.2 The IBM RS 6000
The performance of two UHFFT codelets on the IBM RS
6000 processor for various input and output strides is illus-
trated in Figure 4. As for the SGI R10000 the performance is
presented as a fraction of the peak achievable performance.
The peak processor performance for the IBM RS 6000 pro-
cessor is 480 MFlops. The IBM RS 6000 processor has only
one level of cache and the cache is two{way set{associative
(Associativity = 2) of size 128 KB. The small cache size
(128 KB) of this con�guration causes the performance of
the codelets to drop drastically at relatively small values of
the input or output strides. The performance drop due to
cache trashing occurs when

stride >
128KB

16 � 2 � codelet size
2

=
213

codelet size
:

Hence, the performance of codelets drop for smaller and
smaller strides as the codelet size increases. The typical
codelet performance is shown in Figure 4. In Figure 5 we
present the average performance for each codelet along with
the range of performances for each of them.

4.3.3 The HP PA8200
As compared to the IBM RS 6000, the larger cache (1 MB)
and faster processor (180 MHz) allows the code to perform
much better on the HP PA8200. The performance of the
codelets is very symmetric with respect to the input and
output strides for data. The HP PA8200 processor has only
one level of cache and the cache is direct mapped or one{way
set{associative (Associativity = 1) of size 1 MB. The direct

0
2

4
6

8
10

12
14

16

0

5

10

15

0

0.2

0.4

0.6

0.8

Log2(Input stride)

Radix−8 Perf. avg. = 158.5 (Forward, UHFFT 250 MHz R10000)

Log2(Output stride)

0
2

4
6

8
10

12
14

16

0

5

10

15

0

0.2

0.4

0.6

0.8

Log2(Input stride)

Radix−16 Perf. avg. = 149.8 (Forward, UHFFT 250 MHz R10000)

Log2(Output stride)

Figure 2: 250 MHz SGI R10000 performance for codelets of size 8 and size 16 (fraction of the peak achivable

performance.)

0
2

4
6

8
10

12
14

16

0

5

10

15

0

0.1

0.2

0.3

0.4

Log2(Input stride)

Radix−8 Perf. avg. = 56.8 (Forward, UHFFT 120 MHz RS6000)

Log2(Output stride)

0
2

4
6

8
10

12
14

16

0

5

10

15

0

0.1

0.2

0.3

0.4

Log2(Input stride)

Radix−16 Perf. avg. = 60.3 (Forward, UHFFT 120 MHz RS6000)

Log2(Output stride)

Figure 4: 120 MHz IBM RS 6000 performance for codelets of size 8 and size 16 (fraction of the peak achievable

performance.)

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 20 32
0

20

40

60

80

100

120

140

160

180
120 MHz RS6000. Peak performance = 480 MFlops

Codelet size

M
FL

O
P

S

Forward
Inverse

Figure 5: 120 MHz IBM RS 6000 UHFFT codelet
strided performance.

mapped cache can hold a particular data element in only one
speci�c block of the cache. Hence, cache trashing occurs for
all codelets once the data strides exceed a particular size.
The sharp drop in performance due to cache trashing for

the codelets occurs at the following strides:

stride >
1MB

16 � 1 � codelet size
2

=
217

codelet size

The sharp drop in performance can be observed in Figure
6. The advantage of the larger cache can be seen as the
performance drop due to cache trashing occurs much later
as compared to the IBM RS 6000. Since the performance
data for all codelets is very similar, we only present complete
codelet performance data for a few of them on this processor.
In Figure 7 we present the average performance for each
codelet along with the range of performances for each of
them.

4.3.4 The Intel Pentium–II
The small data (16 KB) and instruction (16 KB) cache on
the Intel Pentium{II processors a�ect the performance of
large codelets (size 16 and 32 for the benchmarked codelets)
adversely. The low number of registers (8) also makes the
performance of codelets with large number of data points
drop drastically. From Figure 9, we see that the codelet of
size 4 performs the best on this processor as the codelet and
data both �t in the primary instruction and data cache (16K
each) respectively. Moreover, the Intel Pentium{II proces-
sor has a four{way set{associative cache. Hence, no cache
trashing occurs for codelets up to size 4. A sharp drop in

0
2

4
6

8
10

12
14

16

0

5

10

15

0

0.1

0.2

0.3

0.4

Log2(Input stride)

Radix−8 Perf. avg. = 164.7 (Forward, UHFFT 180 MHz PA8200)

Log2(Output stride)

0
2

4
6

8
10

12
14

16

0

5

10

15

0

0.1

0.2

0.3

0.4

0.5

Log2(Input stride)

Radix−16 Perf. avg. = 181.2 (Forward, UHFFT 180 MHz PA8200)

Log2(Output stride)

Figure 6: 180 MHz HP PA8200 performance for codelets of size 8 and size 16 (fraction of the peak achievable

performance.)

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 20 32
0

50

100

150

200

250

300

350
180 MHz PA8200. Peak performance = 720 MFlops

Codelet size

M
FL

O
P

S

Forward
Inverse

Figure 7: 180 MHz HP PA8200 UHFFT codelet

strided performance.

performance due to level{one cache trashing for the larger
codelets occur at the following strides:

stride >
16KB

16 � 4 � codelet size
2

=
29

codelet size

and the performance drop due to level{two cache trashing
occurs at strides:

stride >
512KB

16 � 4 � codelet size
2

=
214

codelet size

The Intel Pentium{II processor executes reads from memory
in a speculative manner. This reduces the number of cache
misses for reads as compared to the writes. Writes to cache
when missed are directly written to memory in the Intel
Pentium{II processor. Hence the performance drop due to
large data output strides is greater than that due to large
input strides (see Figure 8).

4.4 Analysis of Execution Strategy
In this section we report performance data for di�erent exe-
cution plans for the UHFFT. As far as the user of the library
is concerned, the performance of the selected execution plan
is what is important for the performance of the application

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 20 32
20

40

60

80

100

120

140

160

180

200

220
 400 MHz Pentium II. Peak performance = 400 MFlops

Codelet size

M
FL

O
P

S

Forward
Inverse

Figure 9: 400 MHz Intel Pentium{II UHFFT

codelet strided performance.

that uses the library. The reported execution times include
the time for the computation of the transform using the
particular execution plan but excludes the time for twiddle
factor computation and the time for the generation of the
execution plan.

It is impossible to list here the performance of all plans for
all possible FFT sizes. In Figures 10, 11, 12, and 13 we il-
lustrate the performance sensitivity for some FFT sizes that
are powers of 2, as they are the most commonly used sizes
in scienti�c codes. The performance of the di�erent plans
are presented sorted in order of decreasing performance, the
plan index being the relative order of the plan with respect
to performance. Thus, the plan with the smallest execu-
tion time is given index 1, the plan with the second smallest
execution time is given index 2, etc. Table 4 lists the perfor-
mance of all plans for an FFT of size 16 for the SGI R10000,
while Tables 5, 6 and 7 give the same information for the
IBM RS 6000, the HP PA8200 and the Intel Pentium{II
respectively.

Figures Figure 10, Figure 11, Figure 12, and Figure 13 show
the performance of best plans for selected sizes, and di�erent
architectures.

0
2

4
6

8
10

12
14

16

0

5

10

15

0.2

0.3

0.4

0.5

0.6

0.7

Log2(Input stride)

Radix−4 Perf. avg. = 188.8 (Forward, UHFFT 400 MHz Pentium II)

Log2(Output stride)

0
2

4
6

8
10

12
14

16

0

5

10

15

0.2

0.25

0.3

0.35

Log2(Input stride)

Radix−16 Perf. avg. = 92.6 (Forward, UHFFT 400 MHz Pentium II)

Log2(Output stride)

Figure 8: 400 MHz Intel Pentium-II performance for codelets of size 4 and size 16 (fraction of the peak

achievable performance.)

Plan index Plan Time (sec) MFlops
1 16 1.493e-06 214.32
2 2 8 4.554e-06 70.27
3 4 4 5.644e-06 56.69
4 8 2 7.210e-06 44.38
5 2 2 4 8.387e-06 38.15
6 2 4 2 1.048e-05 30.53
7 4 2 2 1.099e-05 29.10
8 2 2 2 2 1.371e-05 23.33

Table 4: 250 MHz SGI R10000 execution plan per-

formance for size 16 FFTs.

0 2 4 6 8 10 12 14 16
0

50

100

150

200

250

300

log2(n) elements

P
er

fo
rm

an
ce

 (M
Fl

op
s)

250 MHz R10000 UHFFT Performance

Figure 10: 250 MHz SGI R10000 execution plan

performance.

Plan index Plan Time (sec) MFlops
1 16 2.739280e-06 116.82
2 2 8 7.734200e-06 41.37
3 4 4 9.410750e-06 34.00
4 8 2 1.254800e-05 25.50
5 2 2 4 1.349130e-05 23.72
6 2 4 2 1.668680e-05 19.18
7 4 2 2 1.761220e-05 18.17
8 2 2 2 2 2.172130e-05 14.73

Table 5: 120 MHz IBM RS 6000 execution plan per-
formance for size 16 FFTs.

0 2 4 6 8 10 12 14 16
20

40

60

80

100

120

140

log2(n) elements

P
er

fo
rm

an
ce

 (M
Fl

op
s)

120 MHz IBM RS 6000 UHFFT Performance

Figure 11: 120 MHz IBM RS 6000 execution plan

performance.

Plan index Plan Time (sec) MFlops
1 16 1.874480e-06 170.71
2 2 8 7.932890e-06 40.34
3 4 4 9.535160e-06 33.56
4 8 2 1.222470e-05 26.18
5 2 2 4 1.542790e-05 20.74
6 2 4 2 1.837990e-05 17.41
7 4 2 2 1.954020e-05 16.38
8 2 2 2 2 2.533680e-05 12.63

Table 6: 180 MHz HP PA8200 execution plan per-
formance for size 16 FFTs.

Plan index Plan Time (sec) MFlops

1 2 8 2.879530e-06 111.13
2 16 3.104810e-06 103.07
3 4 4 3.774120e-06 84.79
4 8 2 5.263150e-06 60.80
5 2 2 4 5.283630e-06 60.56
6 2 4 2 6.362200e-06 50.30
7 4 2 2 6.622240e-06 48.32
8 2 2 2 2 8.605230e-06 37.19

Table 7: 400 MHz Intel Pentium{II execution plan
performance for size 16 FFTs.

0 2 4 6 8 10 12 14 16
20

40

60

80

100

120

140

160

180

log2(n) elements

P
er

fo
rm

an
ce

 (M
Fl

op
s)

180 MHz PA8200 UHFFT Performance

Figure 12: 180 MHz HP PA8200 execution plan per-

formance.

0 2 4 6 8 10 12 14 16
40

60

80

100

120

140

160

log2(n) elements

P
er

fo
rm

an
ce

 (M
Fl

op
s)

400 MHz Pentium II UHFFT Performance

Figure 13: 400 MHz Intel Pentium{II execution
plan performance.

5. CONCLUSION AND FUTURE WORK
We have evaluated the UHFFT library on multiple plat-
forms and seen that we achieve good performance on all
architectures. The adaptive approach that we have chosen
for the library is shown to be an elegant way of achieving
both portability and good performance.

Straight line code for DFTs of moderate size prove to be
more e�cient than constructing them with smaller kernels.
For example, a straight line DFT codelet of size 16 is much
more e�cient than computing the size 16 DFT using smaller
codelets (for example, using 4 size 2 codelets), as is shown
in Table 5, Table 6 etc. But writing large straight line code
is time consuming. Thus, the code generator approach to
building the codelets is an e�cient way to address the prob-
lem.

The overall design of the library is also seen to be exible
and extensible. The ease with which the whole UHFFT
library can be regenerated allows us to easily incorporate
new codelets and optimization rules to the library.

The UHFFT library is far from complete. We have so far
only demonstrated the e�ectiveness of the adaptive algo-
rithm and our approach to the design of the library. There
are still many more optimizations possible. The UHFFT
library also needs to be extended further to include real-to-
complex, complex-to-real, sine and cosine transforms. Other
applications such as convolution also can be included in the
library.

We have so far implemented a uniprocessor library. Many
applications that use FFT run on parallel systems with data
distributed over many processors. Hence, a parallel imple-
mentation of the library is essential. The same approach of
multi-level optimization can be applied to the parallel im-
plementation too.

6. REFERENCES
[1] J.C. Cooley and J.W. Tukey. An algorithm for the

machine computation of complex fourier series. Math.

Comp., 19:291{301, 1965.

[2] Matteo Frigo and Steven G. Johnson. The Fastest
Fourier Transform in the West. Technical Report
MIT-LCS-TR-728, MIT, 1997.

[3] Charles Van Loan. Computational frameworks for the

fast Fourier transform. Philadelphia:SIAM, 1992.

[4] P. Duhamel and M. Vetterli. Fast Fourier Transforms:
A Tutorial Review and a State of the Art. Signal
Processing, 19:259{299, 1990.

[5] C. Temperton. A Note on Prime Factor FFT
Algorithms. Journal of Computational Physics,
52:198{204, 1983.

[6] C. M. Rader. Discrete fourier transforms when the
number of data samples is prime. Proceedings of the
IEEE, 56:1107{1108, 1968.

[7] P. Duhamel and H. Hollmann. Split Radix FFT
Algorithms. Electronic Letters, 20:14{16, 1984.

[8] MIPS R10000 Microprocessor. Users Manual. MIPS
Technologies, Inc., 1996.

[9] IBM. RS6000 Technical speci�cation.
http://www.rs6000.ibm.com/, 1999.

[10] Exemplar Programming Guide. Hewlett-Packard, Inc.,
1997.

[11] Intel Architecture Optimization. Reference Manual.
Intel Corporation, 1999.

[12] Rudolf Berrendorf and Heinz Ziegler. PCL: The
Performance Counter Library.
http://www.fz-juelich.de/zam/PCL/, 1999.

